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Few-body anharmonic oscillators and the matrix continued 
fractions 

M Znojil and L Majling 
Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei, Czecho- 
slovakia 

Received 2 August 1982 

Abstract. For both identical and distinguishable particles and for an arbitrary polynomial 
approximation to the realistic two-body forces, the A-body Hamiltonian may be converted 
into an infinite block-three-diagonal matrix in the properly arranged, translationally 
invariant, oscillator basis. As a consequence, the exact Green function and all the 
projections of eigenstates of the microscopic Schrodinger equation become expressible in 
terms of the matrix continued fractions. This generalises the recent reformulation of the 
one-dimensional A = 1 anharmonic problem by Graffi and Grecchi. The quick conver- 
gence of this non-perturbative method of solving the many-body bound-state problem is 
demonstrated for the simplest three- and four-body examples. With the core-possessing 
type V ( r )  = - r 2  + r 4  of the spin- and isospin-independent two-body interaction, only the 

error in the three-bosonic ground-state energy arises from restricting our formulae 
to 5 x 5 dimensional matrices. 

1. Introduction and summary 

The microscopic description of nuclear structure is a typical situation where we must 
use efficient approximation techniques since the ‘exact’ numerical solution of the 
underlying microscopic Schrodinger equation 

is extremely complicated. This is caused by the strong core of the phenomenological 
nucleon-nucleon forces, the long range of the Cwlombic interaction, etc. 

Perturbation approaches may start from the only solvable many-body model with 
the harmonic oscillator (HO) forces V(P) - r 2  and often encounter formal as well as 
practical difficulties. The simple-minded perturbation strategy is therefore modified 
by alternative variational techniques adapted to the specific nature of the particular 
problem in question. For example, the Faddeev-Yakubovsky equations are usually 
considered for the few-body energies, exp(-S) formalism describes the structure of 
magic nuclei, etc. In the present paper we shall investigate the possibilities offered 
by the formalism of the matrix continued fractions (MCF, see § 2 or Znojil 1980). 

Our present approach to the many-body problem is inspired by Graffi and Grecchi 
(1975) and their exact solution of the one-body problem with anharmonic oscillator 
(AHO) interactions. Our main idea lies in the replacement of any ‘realistic’ force by 
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its polynomial approximation 

V ( f ) =  f g,(f2)" g , > O , p s l .  (1.2) 
m = l  

We shall see below that this leads to the applicability of the MCF method. Since we 
are interested only in the sufficiently strongly bound states, the necessary value of 
degree p in the AHO force (1.2) may be expected to be reasonably small. Intuitively, 
this may be interpreted as a consequence of the spatial confinement of the system and 
supports a priori our belief in the overall efficiency of the MCF stragegy. 

In the numerical context, MCF formalism preserves some of the merits of the 
Lanczos algorithm. Because of the present widespread accessibility of medium-sized 
computers, its iterative manipulations with relatively small matrices seems to be a 
highly promising technique. It might also bridge the gap between the analytic and 
purely numerical pictures of the physical processes and resembles partially the some- 
what related doorway and hallway state constructions (Feshbach et a1 1980). 

For pedagogical reasons, we first present our results for distinguishable particles 
( 0  3) while the realistic system of indistinguishable particles (we neglect spin variables 
for the sake of brevity) is studied in 0 4. We show how group theory helps to elucidate 
the structure of the optimal basis and we emphasise the minimisation of dimensions 
of the continued-fraction matrices. This meets the practical requirements concerning 
computer capacity. One of our main conclusions is the rather unusual observation 
that, once the anharmonicity p in (1.2) is fixed, an increase in A ,  especially for the 
transition to the genuine many-body problem ( A  = 2 + A  = 3 + . . .), is surprisingly 
'smooth' from the technical point of view, especially in the case of identical particles. 
Thus, although the exceptional character of the many-body HO force is even more 
pronounced than in the traditional one-particle problem (the AHO corrections alter 
the Schrodinger equation more profoundly), the formal analogy between different 
values of A is easily preserved. Furthermore, all the technical and numerical charac- 
teristics of the various few-body AHO calculations (increase of dimensions, rate of 
convergence, etc) prove to be comparable from the practical point of view. In the 
simplest p = 2 examples with a 'core' we have achieved fairly good convergence of 
the ground-state energies for the three- and four-body bosonic AHO systems, never 
using matrices larger than 10 x 10. 

Of course, for very high A,  the numerical performance of the MCF formalism 
becomes less efficient since the dimensions in the exact Schrodinger equation grow 
too quickly. Nevertheless, the iterative character of our MCF representation of the 
Green function seems to remain at least a useful guide for making approximations, 
the character of which might resemble the various averagings employed in the reaction- 
theory context (Feshbach et al 1980). 

Our preliminary numerical tests are very encouraging for light nuclei. We may 
therefore expect that some more realistic models (with A > 3 and p > 2 or including 
the spin, isospin and tensor forces) will also be exactly solvable by the present MCF 
technique. 

2. The matrix continued-fraction method 

Linear equations of the Schrodinger type may be treated by methods varying from 
the analytic representations of 9 and E to their purely numerical approximations. 
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The MCF method lies somewhere between these two extremes and represents a 
reasonably flexible formalism comprising many specific approaches as special cases. 
In the present context, we may explain its structure by recalling the inspiration of 
our paper, namely, the solution of the one-body AHO problem in one spatial dimension 
as given by Graffi and Grecchi (1975). In their case, the use of the HO basis (Hermite 
polynomials) implies the band structure of the Hamiltonian H. In full analogy with 
the classical treatment of the three-diagonal (Jacobi) matrices (Wilkinson 1965) the 
authors arrive at the MCF representation of the Green function and identify its 
numerically determined poles with the AHO energy levels. 

The formalism summarised here is worked out in detail by Znojil (1980). To the 
partitioned HO basis IX;), m = 1, 2 , .  . . , Mk, k = 1, 2 , .  . . , and to the related Hamil- 
tonian matrix in the partitioned block-three-diagonal (BTD) form 

A1 B1 0 . . .  Ak = A $ , B k  =BF,  
H =  BT A2 B2 0 i , j  = 1 , 2 , .  . . , M k  

[ O  B l  . . .  *'I n = 1 , 2 ,  . . . ,  Mk+l (2.1) 

. . .  k = 1 , 2 , .  . . 
we may assign the auxiliary sequence Fk(E) ,  k = 1, 2, , . . , satisfying the recurrences 

Fk(E) = (E1 -Ak -BkFk+i(E)B:)-l. (2.2) 

The finite truncation of the matrix H is equivalent to the initialisation FN+l (E)  = 0 
of (2.2). It is assumed that the limit N + CO exists and defines each MCF Fk(E) in the 
same way as the classical continued fractions are defined as limits of their finite 
approximants (Wall 1948). The MCF coincide with the classical continued fractions 
whenever Mk = 1, k = 1 , 2 , .  . , , 

Assuming the existence of the MCF sequence F k ( E )  in the vicinity of the AHO 
energy levels E =Eo,  we may identify G(E) = det F1(E)  with the Green function of 
the Schrodinger equation (1.1). Moreover, the Schrodinger equation is reduced to 
the finite-dimensional model-space form 

MI 

1 (Eaij - XGff)Di = 0 j = 1 ,2 ,  . . . , MI 
i = l  

where the effective Hamiltonian is defined explicitly by the exact MCF expression 
Fff = A + B1F2(E)B:.  Once the energies E =Eo are determined numerically as the 
poles of G(E), the projections Dl =<Xi 14) of the exact solution on the model-space 
basis may be found easily from the M 1  x M 1  dimensional linear algebraic equation 
(2.3). As a consequence, the complete solution of (1.1) with any H of the BTD form 
(2.1) may be written as a compact expansion (Znojil 1980) 

The normalisation formula determining a, 

follows from the orthonormality of the HO basis. 
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The proofs of convergence are an important ingredient of the MCF formalism 
converting the formal solution into the analytical one. In the present context, they 
are still missing even when A = 1, especially for the infinite series (2.4). At the same 
time, their numerical A = 1 tests have led us to expect that the favourable numerical 
properties might survive the transition to the many-body AHO cases. 

3. Distinguishable particles 

The one- +two-body or the one- +three-dimensional extensions of (1.1) are trivial 
and need not be explained in detail. In a way, their further A = 2 + A  = 3 + . . , 
generalisation is also a matter of mere technicality but the details are less trivial-they 
will be worked out in the following. 

3.1. Anharmonic forces in Jacobi coordinates 

The first technical question we must resolve when considering systems with A 2 2  is 
the removal of the centre-of-mass (CM) degrees of freedom. This step is entirely 
standard-assuming for simplicity that all the particle masses are equal ( h  = 2mi = 1, i = 
1,2,  . . . , A), we may define the Jacobi coordinates 

where  FA+^ = 0. Since the kinetic energy operator remains proportional to the sum 
of Laplacians in the new variables (3.1), we may put 

and obtain the AHO Schrodinger equation (1.1) in the translationally invariant form 

Here, $0 is independent of gA and Vk ;̂p:, is a genuine many-body operator. 

character of V since 
The HO interaction ( p  = 1) is exceptional because of the removal of this many-body 

Starting from the first non-degenerate (quartic, p = 2) case, the angular dependence 
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T n  = + 1)1 n = l , .  . . , A - 1  

sij = titj cos uii/[ij(i + l)( j  + 1 ) ~ ' ' ~  

1 si < j < A  -1 m = l , 2  , . . . ,  p. 

We observe that the complexity of the explicit Va ;̂p:, prescription increases rather 
quickly with p. Nevertheless, the corresponding lengthy formulae may comfortably 
be generated for any fixed A and p by an appropriate symbolic-manipulation language 
algorithm on the computer. The general structure of VY,% characterised by the 
explicit presence of the angular variables resembles strongly the case of the non-central 
anharmonic potential solved by the MCF technique by Znojil (1981) for A = 1. This 
is the main inspiration of the following section. 

3.2. Unsymmetrised oscillator basis and MCF solvability 

Preserving the full analogy with the non-central modification of the one-body AHO 
we may get rid of the angular variables in the next entirely standard step using the 
'multipolar' partial-wave decomposition of cL0. Of course, when A > 2, the orthonor- 
malised and complete set of spherical 'A - 1-polar' harmonics [{ l} )  is not unique and 
may be defined with different angular momentum couplings (see Varshalovitsh et a1 
1975). In the simplest arrangement 

- - - - -  
1A-l-k 1.4-2 = AA-2 Li+i+ li = A i  

i = A - 3 ,  . . . ,  2 L2+ il = E  (3.4) 

of the vector-addition scheme corresponding to the composite index (quantum 
numbers) 

{ I )  = (IIA-2 = (IA-llA-Z(hA-Z)rA-,(AA-3) 9 * IILM) 
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we obtain the harmonics (ai = (cos B;, v i ) )  
(ai% - . a A - i l { l l A - ~ )  

C A A - 2 @ A - 2  
= 1 C ~ ? ~ A ~ , ~ C ~ ~ ~ ~ A , W ,  * * * /A  -2  mA -2  / A  - 1 mA - 1 

m l  ... mA-1 

@ 2 , .  , W A  -2 

Y I l m l ( e 1 ,  vl)  * * * Y I A - ~ v I A - ~ ( B A - ~ ( P A - ~ )  (3.5) 

where CL?@ and Ylm(B, c p )  denote the standard Clebsch-Gordan coefficients and the 
spherical harmonics, respectively. Another coupling pattern we shall need below 

{ l } = { l } m  = ~ A - I .  I m + 2 ( A m + 2 ) l m + l I m ( A ) ( A m ) l m - l  9 -  .LM, 
may be obtained when we replace the (m + 1)th and mth terms in (3.4) by the vector 
compositions - - -  - - -  

Im+l  + I, = A  A m + , + A  "A,. 

The overlap with the original states coincides with the so-called Racah coefficients: 

and is proportional to the 6-j symbol { }, 
For any coupling scheme, we introduce the partial waves c p { / )  = ( { I }  1 $o) and derive 

the radial form of the Schrodinger equation (3.3) in the usual way. Since the action 
of the kinetic energy operator on the harmonics 1{1}) is well known, the detailed form 
of the radial equation depends on the action of the angular varhbles S,,. When we 
identify cos w,, with the bipolar funct ion4.rr(R8n,  I1100)/d3 and employ the 
Clebsch-Gordan series 

(ai& I 1100) (nian2I 11l2Ap)  

(3.7) 

X(n1fl2\11+1-2p, 1 2 + 1 - 2 ~ , A ~ )  

it is not difficult to specify the decomposition of Sij into the finite number of 1{1'}) in 
accord with the triangular inequalities, 

Concerning the partial-wave representation of the operator Ho, we may therefore 
infer that the multipolar basis may be ordered in such a way that Ho acquires the 
block-three-diagonal operator form resembling (2.1); an example is given in § 3.3 
below. 

Completing the analogy with Znojil (1981), we introduce the A-body HO basis 
I (n ) { l } ) ,  ( n )  = (nl ,  n2, . . . , nA-1) as the multipolar harmonics (3.5) multiplied by 
(A - 1)tuple products of the radial A = 1 HO states 

= li,j, l i , j  1. 

(3.8) 
e'x-" d" 

L:(x) =? -(e-"x"+") 
n .  dx" 
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where L : ( X )  are the classical Laguerre polynomials. Since they satisfy the fundamental 
identities (Bateman and ErdClyi 1953) 

(3 .9)  

the action of the radial variables Ti on any HO state (3 .8)  is similar to the action of 
the kinetic energy operator-it generates only the two other new states with n = ni f 1 .  
At the same time, the action of the 6 linear variables Sij  is accompnied by the 1 
shift-hence equations (3 .9)  remain applicable. This is of fundamental importance 
here; the action of the full operator Ho on any state ~ ( n ) { l } )  always generates the 
finite number of similar states. The matrix representation of Ho is of the form (2 .1)  
due to the orthogonality of the HO basis. This completes the proof of our main 
statement, i.e., the applicability of the MCF technique of 0 2  to any A s 1  AH0 
problem. In detail, we may define the Green function G ( E )  = det F1(E) ,  its poles 
E =Eo  and the HO projections Dk(Eo)  of t,ho, i.e. the exact solution of the A H 0  
many-body Schrodinger equation, provided that all the corresponding N + CO limits 
exist. 

We may specify the optimal ordering of the basis states. This generalised Lanczos 
(GL) construction leads to the minimal dimension of the blocks Mk and proceeds as 
follows. 

(i) We choose any finite ‘model-space’ subset of the HO I(n){ l})  states and denote 
its elements by the kets IXY), m = 1 , 2 ,  . . . , M 1 .  

(ii) The action of the Hamiltonian HO on this model space generates the finite 
superpositions of the new ‘doorway’ states \ (n’ ) { l ’ } )  to be denoted as IX,”), m = 1 ,  

(iii) Repeatedly, we re-numerate the full HO basis in such a way that each group 
IX?+I), m = 1, 2 , .  . . , M ~ + I  of the kth ‘hallway’ states contains precisely the new 
states I(n”){1”}) generated from the old group IX;), m = 1 ,  2 ,  . . . , Mk by the action 

2,  . . , , M2. 

of Ho. 

3.3. The three-body illustration 

In the simplest case with A = 3 ,  p = 2 and L = 0 where 

(ninzI 111200) = &,i , [ ( -1)’ /4~1(211+ 1)1/2Pi,(cos w i z )  

and Pi(x) are the Legendre polynomials, the partial-wave expansion of $o becomes 
extremely simple: 

(3.10) 

We shall further require the f l - i z  symmetry of the wavefunction which is 
equivalent to the even parity of the summation index 1 in (3.10).  Owing to the simplicity 
of this example, the radial Schrodinger equation is 
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1 (1 + 1)(1+ 2) 
) = 6g’(21 + 3)(2l+ 1)’”(2l+ 5)l/’ a, = 6g2( 1 + 

(41 - 2)(41+ 6) 

and resembles strongly that of Znojil(l981). The abbreviations ai and PI here denote 
the normalised matrix elements 

(1 I3gz(1+ 2 sin2 w12) 1 I)  and (I I6g2 cos’ W I Z  I I +2), 

respectively. 
Let us admit that the third particle is distinguishable from the remaining two 

bosons so that the Pauli principle is satisfied in a trivial way. Then, we may formulate 
the following. 

Proposition. Assuming that the auxiliary MCF quantities are convergent, equations 
(2.3) and (2.4) with Mk = k(2k - 1) represent the exact solution of our three-body 
quartic AHO example. 

Proof. Denoting the basis states by Inl, nz, I), the matrix Ho is three-diagonal in 1 and 
its infinite submatrices Hunznz+2, H~lnznz+l, Hu+Znznz and Hrfnznz contain one, three, three 
lower and five non-zero diagonals, respectively. Hence, each HO state is coupled to 
at most 5 + (2 X 3) + (2 X 1) + (2 X 3 X 3) = 31 other HO states. We may choose the 
one-dimensional model space with [Xi ) = l000) and generate the GL ordering with 
MI= 1, M Z  = 6, = 15, . . . in accord with 0 3.2. 

4. Identical particles 

4.1. Action of the Pauli principle 

The complete set of the commuting operators HO (Hamiltonian), L2 (square of the 
full angular momentum) and L, (its projection), characterises an intrinsic state IL0 of 
the A-body system provided that the particles are distinguishable. The more interest- 
ing cases (identical bosons or fermions, without spin for simplicity) necessitate an 
addition of the projectors U:;; (symmetriser or antisymmetriser, respectively). It is a 
matter of simple algebra to verify that the symmetrisation/antisymmetrisation operator 
U::\ may be defined by the recurrent formula 

in the bosonic/fermionic case. Here the operator P(i )  corresponds to the interchange 
of the neighbouring particles Fi-l and f i .  

The most important property of factorisation (4.1) is the simplicity of its Jacobi 
coordinate representation. First, the trivial algebra implies that Plm+2) will be represen- 
ted by the (pseudo)orthogonal and real symmetric transformation 
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involving just the two coordinates ( f m  = Fm = 0 for m = 0). The quantities cpm in (4.2) 
are the ‘Euler’ angles in the general rotation 

s((J, *fi+j) =P(i+lp(i+z) . P(i+j)P(i+j-l). . - P(,+I). 

Next, the elementary rotation ( 4 . 2 )  may be re-interpreted as the ‘unequal-mass’ 
transition from the ‘CM’ coordinates im = R, <m+l = f to the ‘one-particle’ variables 
f l = p m  and f2=pm+1.  If we also change the coupling of the angular momenta in 
accord with (3.6), then (4.2) degenerates to a transformation of a certain two-particle 
subset of the full HO basis. Of course, the P(m+2) matrix may be represented by the 
Moshinski brackets (. . . I .  . . )D  with the mass ratio D = tan’ qm : 

( t L I n L [ L ) ( t L + 1  I n L + l l k + l > ( .  . . nLnL+i.. * l { l } m )  

= 1 ( n m + l l m + i n m l m  ; A 1 n LlLn L + i l L + i  ; A ) l / m ( m + 2 ,  
nmlmnm+ilm+i 

~ ( 5 m I n m l m ) ( 5 m + l l n m + l l m + 1 ) ( .  n m n m + ,  * . l { l ) m )  (4.3) 

so that the complete symmetrisation/antisymmetrisation matrix g&\ must remain 
diagonal with respect to the energy quantum number X = XfA’ ( 2 n i  + li) and the parity 
of E?=;’ lie As a consequence, the BTD structure of Ho survives its symmetrisation/anti- 
symmetrisation: u{2)goui2\ = H o s / a .  

4.2. S y m m e t r i s e d  o s c i l l a t o r  b a s i s  

Let us start this section with a short summary. We may assign the MCF solution as 
described in 9 2 to the many-body Schrodinger equation with the AHO two-particle 
interactions. This is a consequence of the BTD structure of the Hamiltonian HO or 
Hosl. in the unsymmetrised GL-ordered HO basis. 

Unfortunately, the product construction (3.5) x (3.8) of this basis cannot reflect 
the singular character of the projectors (T(A).  In other words, the action of Ho,~,  on 
I ( n ) { l } )  generates only a few independent new states. They must be represented as 
superpositions of a large number of the unsymmetrised products I ( n ) { Z } ) .  In this way, 
Hosla in the form of the original BTD matrix Ho multiplied by the BTD matrix u ( ~ )  
will be characterised by an inadequate increase of the block dimensions Mk for higher 
k. 

The key to the problem lies in the symmetrisation of the basis itself, IX:) - I ( n )  
{ I ) )  + IX: ) - u ( A ) l ( n ) { I } ) .  In the more general setting, we may construct the basis 
states as such superpostiions of I ( n ) { l } )  which also possess, besides the fixed total 
energy X and angular momentum L,  the fixed quantum number [f] (Young tableau) 
characterising the irreducible representations of the permutation group. We emphasise 
that the fixed symmetry pattern [f] is the most important ingredient in the present 
modification of the basis. It has two aspects: 

(a) we may simplify the evaluation of the matrix elements of Ho in the standard 
way and consider each particular component V ( r i  - r i )  of the potential V?& separ- 
ately. Formally, the commutation of Ho and U(A)  is taken fully into account; 

(b) we may simply extend our discussion to particles with spin. 
Of course, Ho is diagonal with respect to N, L and [f] so that the new symmetrised 

basis will be more appropriate for our purposes. Some new technical problems arise 
with the complete classification and algebraic construction of this basis. This was 
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discussed by Kramer and Moshinski (1966) introducing further quantum numbers 
(AF)  and A numbering the representations of the groups SU(3) and OA-l respectively. 
Concerning the general case, see Majling et a1 (1974, 1979) for details. 

4.3. The three- and four-body examples 

For p = 2 and the three identical spinless bosons in the s state, each old group IX:), 
m = 1,2 ,  . . . , Mk as specified in 0 3.3 contains k different fixed-energy subgroups with 
K = 2k - 2, 2k, . . . ,4k -4.  The partition dimensions of the symmetrised operator 
a ( ' : : ~ o a i & ) ,  Mk = &2k(2k+1 - 1)(7 x 2kc1 - s), grow extremely quickly even for the low 
cut-offs ( M I  = 1, MZ = 21, M3 = 230, . . .), due to the non-diagonality of vi;;. Even 
the fixed-energy re-partitioning with Mk = $k (2k - 1)(4k - 1) or, alternatively, Mk = 
ik(2k + 1)(4k + 1) is rather inefficient (M3 = 140 or 91, respectively). At the same 
time the A = 3 classification of Kramer and Moshinski (1966) 

with the Wigner function d and the SU(3) Clebsh-Gordan coefficients (::::I::) appears 
to be complete and sufficiently simple for practical purposes (Makharadze and Mik- 
helashvili 197 1). Its introduction reduces the block dimensions Mk significantly below 
the values of 0 3 (cf table 1). 

Table 1. Increase of the matrix dimensions needed in the MCF method (L = 0). 

~~ ~ ~~~ ~~ ~ 

Two-body Three-body Four-body 

Symmetry [fl PI [31 [41 
Anharmonicityp 2 3 2 3 2 2 2  2 3  

_ _  0 6 12 _ -  _ _  A 

C u t 4  N [ h w ]  

0 1 1  1 1 1  0 0  1 1  
2 2 2  2 2 2  0 0 2 2  
4 2 3  3 4 3  0 0 4 5  
6 2 3  5 6 4  1 0  9 10 
8 2 3  7 9 5  2 0 17 20 

10 2 3  9 1 2 6  3 0 29 35 
12 2 3  12 16 7 4 1 60 71 

The non-trivial optimisation of the new basis is still possible since, rather supris- 
ingly, Ho becomes diagonal with respect to the rotational quantum number A which 
was originally introduced purely for classification purposes. In this way, we obtain 
the final form of the symmetrised HO basis: 

IX:) = I ~ % F  )LMA[f l )  
with fixed L = 0, [ f ]  = [3],  A = 0 and k is the integer part of t (N+6) .  In this basis, 
our numerical tests of the MCF convergence of the MCF representation of the Green 
function det F 1 ( E )  were performed. 
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For the monotonic potentials (gl > 0 and g2 > O),  the convergence proved to be 
extremely rapid. However, from the physical point of view, similar potentials are less 
interesting than the more realistic models of the nucleonic forces with the repulsive 
core. A priori our choice of the core-simulating values of gl = -g2 = -10 will worsen 
the convergence-it is therefore well suited for illustration purposes. A sample of 
the corresponding results is presented here in table 2 and figure 1. It shows that the 
small-matrix algorithms are sufficient to achieve convergent results and that the energy 
calculations are still easily manageable even on small computers. Figure 1 illustrates 
in more detail the typical core-induced oscillatory dependence of energies on the 
variation of scale (‘spring constant’) of the HO basis and its smoothing for higher 
cut-offs. Notice the similarity of this feature in all the two-, three- and four-body 
systems. 

Table 2. Sample of convergence: ground-state energies (MeV) of the quartic three-bosonic 
oscillators with V ( r )  = -10 r 2  + 10 r 4 ,  

dimhw 1.4 3.0 3.5 6.5 7.0 7.5 9.0 

1 27.355 2.000 1.577 5.489 6.376 7.250 9.889 
2 8.345 1.456 1.575 1.617 2.015 2.484 4.100 
3 3.286 1.258 1.048 0.945 0.993 1.104 1.797 
4 1.712 0.962 0.905 0.896 0.895 0.899 1.045 
5 1.287 0.897 0.900 0.883 0.883 0.884 0.897 
6 1.217 0.884 0.883 0.882 0.882 0.882 0.883 
7 1.189 0.882 0.882 0.882 0.882 0.882 0.882 

r lo; 

0 6 -  

O L  - 

0 2 -  

0- 

- 0 2  - 

-04- 

- 0 6  - 

2 L 4 8 
h W  

Figure 1. Pattern of the basis dependence for the calculated ground-state energies of the 
few-body quartic oscillators. 
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